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A pair potential for the Fe–He system has been developed based on recent magnetic potentials of Fe and
ab initio data. The new potentials can reproduce simple He defects, the migration energy of the tetrahe-
dral He interstitial and various He cluster properties in single crystal system of bcc iron with He atoms.
The potentials are used to study the He energetics of single and bi-interstitial clusters in a R3(1 1 2)
boundary plane using a bi-crystal simulation geometry.
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1. Introduction

Helium atoms generated during the irradiation process have
been suggested to be one of the main reasons for the degradation
of materials used in nuclear energy reactor systems. The accumu-
lation of helium atoms in materials can induce bubble formation,
void swelling, changes in microstructure, high temperature
embrittlement and blistering [1–4]. Ferritic steels are proposed
to be the structural materials in future fission and fusion reactors.
Steels used in fusion reactor will be subject to high energy neutron
irradiation which will produce helium through (n, a) transmuta-
tions. Therefore, to understand the behavior of helium in bcc iron
becomes a crucial issue in the research of usable structural reactor
materials. In an experimental study, information about the radia-
tion damage process, especially the early stages, is not easily acces-
sible due to the extremely short timescales at which they occur.
Molecular dynamics (MD) and Monte Carlo (MC) simulations have
been used to try to understand the behavior of He in reactor mate-
rials, such as the cascade studies to determine the primary damage
state in Fe and subsequent defect evolution [5]. However, the re-
sults of MD for the Fe–He and alloy systems are found to depend
on the choice of the pure Fe empirical potential model and the
Fe–He cross potential. A Helium atom can strongly bind with a va-
cancy, a helium-vacancy cluster or other defects, such as a disloca-
tion or a grain boundary, which will affect the process of
irradiation. In early work, most simulations for He in Fe were based
on the Johnson and Wilson Fe–He potential [6], which predicted
that the octahedral interstitial He is the ground state interstitial
structure [7]. However recent DFT calculations have demonstrated
that it is the tetrahedral He interstitial structure that has the low-
est energy [8]. An EAM potential for Fe–He using a three-body Fe–
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oven).
He interaction has also been developed [9], in which it was argued
that such an angular dependent term was needed to fit to the avail-
able ab initio helium defect energy data [9] – despite He being a
closed shell Nobel gas atom. A disadvantage of such a construction
is that the three-body potential requires more computational time
than a simple pair potential.

On the other hand, Juslin and Nordlund have demonstrated that
a pair potential is sufficient to reproduce the properties of single
He in bulk bcc iron [10]. In the process of fitting suggested by Juslin
and Nordlund, only the properties of single He in bcc iron were
used. These include the substitutional, octahedral and tetrahedral
He formation energies [10]. The properties of complex He-defect
clusters were not used. In high temperature, this potential shows
no clustering of He in bcc iron [11]. Moreover, in both of these ap-
proaches, an EAM potential with three-body term and pair poten-
tial, have been fitted using non-magnetic Fe empirical potential
models. It has however been demonstrated by DFT that ferromag-
netism plays an important role in bcc Fe [12] and therefore a num-
ber of new potentials have been developed based on the so-called
‘‘magnetic potential” formalism [13]. In this paper, the approach of
Juslin and Nordlund is followed however more flexible knot func-
tions are used to describe the interaction of Fe–He, and two new
Fe–He pair potentials are presented that are optimized within
the magnetic potential formalism for bcc Fe [13,14]. Additionally,
several He-cluster binding energies are also included in the fitting.
In order to reproduce the diffusion properties of free He atoms, the
migration energy of single He interstitial defects is also included in
the fitting process, which means that the saddle point of an inter-
mediate energy barrier of the Fe–He system is employed. The
interaction between He is described by the traditional potential
of Beck [15]. It is found that the new pair potentials can reproduce
simple He defects, the migration energy of the tetrahedral He
interstitial and various He cluster properties in single crystal sys-
tem of bcc iron with He atoms. The potentials are also used to
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study the He energetics of single and bi-interstitial clusters in a
R3(1 1 2) boundary plane using a bi-crystal simulation geometry.
2. Ab initio Fe–He data and fitting methodology

Juslin and Nordlund have suggested [10] that ab initio data cal-
culated for the Fe–He dimer with Dmol97 [16,17] can be used to
describe the short range interaction between Fe and He. This dimer
data is important for short range interactions at high energies but
not appropriate to describe the long distance interaction between
Fe and He responsible for material cohesion. This data will also
be used presently. In addition DFT data for small He defects in Fe
exists. This has been calculated mainly by two groups, Seletskaia
et al. [9,18] using the VASP code and Fu and Willaime [8,19] using
the SIESTA code. This data is listed in Table 1. Inspection of this ta-
ble demonstrates that there is not complete agreement amongst
the DFT calculations, in particular the binding energy for the He2

cluster calculated by VASP [9] is 0 eV whereas for the SIESTA[19]
calculation it is 0.43 eV. In the present work the data calculated
using SIESTA is employed. The formation energy of a HenVm cluster
is defined as following:

Ef ðHenVmÞ ¼ EtotðHenVmÞ � ½nEHe þ ðN �mÞEFe� ð1Þ

where N is total number of Fe atoms; EHe and EFe are cohesive en-
ergy of perfect fcc He crystal and bcc Fe crystal, respectively. For dif-
ferent bcc Fe potentials, different EFes are used. EHe is calculated to
be �0.0078 eV/atom which is close to both �0.0080 eV/atom [20]
and �0.00714 eV/atom used by Morishita et al. [21]. The binding
energy of a single He to HenVm cluster can then be calculated with
the formation energy of single He, HenVm and Hen+1Vm cluster:

EbðHeÞ ¼ Ef ðHeÞ þ Ef ðHenVmÞ � Ef ðHenþ1VmÞ ð2Þ

where Ef(He) is the formation energy of He at tetrahedral interstitial
site and Ef(HeiVj) is formation energy of He–V cluster and calculated
with Eq. (1).

Juslin and Nordlund [10] considered the repulsive nature of he-
lium in iron as a screened Coulomb potential, that is, f(r) = (a + b/
r)exp(�cr). In the present work a 5th order knot function represen-
tation is instead used for added flexibility. Knot functions have
been used successfully to describe the interactions of Fe–Fe
[13,14] and Fe–C [22]. In the short range regime of the Fe–He inter-
action, the ab initio dimer data is also used to a range of R1 which is
a little shorter than that used in Ref. [10]. From R1 to R2 a spline
representation is used, and in the regime greater than R2 the afore-
mentioned knot functions are employed. The spline representation
to extrapolate between the dimer data and the present empirical
Fe–He knot function representation was optimized to ensure con-
tinuity up to the second order derivative. The potential therefore
has the following form:
Table 1
Formation and binding energies of helium defects in bcc iron. All values are in eV. The defec
Efoct = octahedral He formation energy, Eftet = tetrahedral He formation energy, EbHe2 = bi
interactions are: FS = Finnis–Sinclair, AMS = Ackland–Mendelev, DUD = Dudarev–Derlet an

Fe–Fe Efs

DFT Seletskaia et al. [9,18] Fu and Willaime[8,19] 4.0
4.2

MD Seletskaia et al. [9] FS 3.8
Juslin and Nordlund [10] AMS 4.1

DUD 4.2
FS 4.1

This work: FeHepot1 DUD 4.2
FeHepot2 CDD 4.2

a The value has been adjusted by Seletskaia et al. in their fitting.
f ðrÞ ¼

Dmol-potential r � R1

Spline-data R1 � r � R2

PN
i¼1

aiðri � rÞ5hðri � rÞ r P R2

8>>><
>>>:

ð3Þ

where R1 and R2 are short range cutoff distances defined above.
Here N is the number of knot functions used and H(x) is a Heaviside
step function defined as H(x) = 1 for x > 0 and H(x) = 0 for x < 0. The
knot coefficients ai are the parameters to be optimized in order to
reproduce a variety of physical properties, whereas the knot posi-
tions ri are fixed.

In the present fitting, the defect formation energies of relaxed
substitutional, octahedral, tetrahedral He interstitials, and the
binding energies of He2 and He3 clusters are used as well as the
migration energy of the tetrahedral He interstitial. These energies
are calculated with the method suggested above. The SIESTA
[8,19] values presently used are listed in Table 1. To obtain the re-
laxed defect structures for a given candidate potential, the molec-
ular statics method is used with a periodic cell size of 4 � 4 � 4a0

in which the appropriate number of He atoms are added either
substitutionally or interstitially. Volume (hydrostatic pressure)
relaxation is also employed in order to compare directly with the
ab initio results [8,19]. After relaxation, defect formation energies,
binding energies and migration energy have been calculated to
compare with ab initio values. Within the fitting program, the
Nudged Elastic Band (NEB) method [23] is used to determine the
migration energy for the ground state tetrahedral He interstitial.
The NEB method can easily find the saddle point of the system be-
tween two known lower energy states by optimizing the chain of
images of the system. By finding the saddle point the important
migration energy can therefore be found. The details of this meth-
od can be found in [23]. The shape of each minimum energy path-
way calculated with NEB is also checked. Only the parabola with
maximal value is selected to calculate the migration energy. Dur-
ing the calculation of migration energy, the optimization was per-
formed under constant volume conditions since volume relaxation
was found to have negligible effect on the migration barrier. The
actual fitting was performed by using a combination of simulated
annealing and non-linear simplex methods.
3. Results

Two Fe–He potentials are fitted using different Fe magnetic
potentials. The first one is the Dudarev and Derlet potential [13]
and the second one is a recently developed parameterization of
the magnetic potential by Chiesa et al. [14] – in particular CS3–
30 (see Ref. [14]). In the current work, FeHepot1 and FeHepot2
are the Fe–He potentials for these respective magnetic potentials.
The fitted parameters are listed in Table 2. The spline data used
from R1 to R2 is listed in Table 3 for FeHepot1 and FeHepot2. For
t formation energy or binding energy are: Efsub = substitutional He formation energy,
nding energy of He to He and EbHe3 = binding energy of He to He2 cluster. The Fe–Fe
d CDD = Chiesa–Derlet–Dudarev.

ub Efoct Eftet EbHe2 EbHe3 Em

8(3.73a) 4.60 4.36 0.00
2 4.57 4.39 0.43 0.95 0.06
2 4.74 4.37 0.15
0 4.51 4.39 �0.01 0.34 0.07
1 4.44 4.33 �0.01 0.32 0.067
2 4.41 4.29
2 4.52 4.41 0.25 0.38 0.063
2 4.58 4.44 0.20 0.56 0.063



Table 2
Parameters for Fe–He potentials.

Knot coefficient a (eV/nm5) Knot point r (nm)

FeHepot1 FeHepot2

a1 2.3177715709828624E�007 �3.105337419990865E�005 r1 0.2750000
a2 2.806803155751341E�005 7.664514354111438E�005 r2 0.2928571
a3 �0.2386549469151253E�005 �2.063477063257156E�005 r3 0.3107143
a4 �3.274515978387913E�005 �4.394916041242475E�005 r4 0.3285714
a5 1.589309516491369E�005 2.500122908686489E�005 r5 0.3464286
a6 8.5836486955798144E�007 8.9898217037701151E�007 r6 0.3642857
a7 �6.8846480862861696E�008 �0.1297650950021615E�005 r7 0.3821429
a8 �3.2823533623409129E�007 �1.2397886870242527E�007 r8 0.4000000

Table 3
Data list for short range from R1 to R2.

r (nm) f (eV) df/dr (eV/nm) d2f/dr2 (eV/nm2)

FeHepot1: R1 = 0.090 nm and R2 = 0.10 nm
0.090000000 12.3556340 �7.565103700 3.8984144100
0.090500000 12.0316366 �7.293616260 3.7414225537
0.091000000 11.7039121 �7.019115283 3.5833796300
0.091500000 11.3724842 �6.741582753 3.4236028512
0.092000000 11.0373349 �6.461003992 3.2620838400
0.092500000 10.6984461 �6.177364324 3.0988142187
0.093000000 10.3557997 �5.890649070 2.9337856100
0.093500000 10.0093778 �5.600843555 2.7669896362
0.094000000 9.65916218 �5.307933102 2.5984179200
0.094500000 9.30513489 �5.011903032 2.4280620837
0.095000000 8.94727785 �4.712738670 2.2559137500
0.095500000 8.58557301 �4.410425338 2.0819645413
0.096000000 8.22000232 �4.104948359 1.9062060800
0.096500000 7.85054773 �3.796293056 1.7286299887
0.097000000 7.47719119 �3.484444753 1.5492278900
0.097500000 7.09991464 �3.169388771 1.3679914063
0.098000000 6.71870003 �2.851110435 1.1849121600
0.098500000 6.33352931 �2.529595067 0.9999817737
0.099000000 5.94438444 �2.204827989 0.8131918700
0.099500000 5.55124735 �1.876794526 0.6245340713
0.100000000 5.15410000 �1.545480000 0.4340000000

FeHepot2: R1 = 0.096 nm and R2 = 0.10 nm
0.096000000 8.44670300 �5.527416200 2.9112068300
0.096500000 8.17323100 �5.383065200 2.8507379300
0.097000000 7.90691700 �5.241737700 2.7902690200
0.097500000 7.64760800 �5.103433600 2.7298001200
0.098000000 7.36158373 �4.458324569 2.2878111663
0.098500000 7.07247959 �3.806574405 1.8412914077
0.099000000 6.78028126 �3.148152703 1.3902201161
0.099500000 6.48497444 �2.483029069 0.9345765825
0.100000000 6.18654483 �1.811173106 0.4743400982

Hen
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HenV2
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Fig. 1. Binding energy of a Heint atom to a HenVm cluster. The black lines are results
from DFT calculations [19]. The green dot lines and red dash lines are results
calculated with FeHepot1 and FeHepot2, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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the short range from 0 to R1, the Fe–He dimer data is used [10]. It is
found that these potentials are able to be reasonably well fitted to
the selected materials data base. The results are listed in Table 1.
The substitutional, octahedral and tetrahedral formation energies
and migration energy are very close to ab initio data [8]. Binding
energies for He to He and He2 cluster calculated with FeHepot1
and FeHepot2 are also improved when compared to other pub-
lished potentials. The actual atomic configurations of He2 and
He3 after relaxation with these two potentials are slightly different,
where the configuration produced by FeHepot2 is most close to
DFT structures [19].

The binding energies of Heint to a HenVm cluster are also calcu-
lated to compare with DFT results [8,19]. All these results are
shown in Fig. 1, where it can be seen that the binding energy for
HenV calculated from these two potentials have the similar trend
as DFT, but lower by �0.2 to 0.4 eV. The binding energy for He to
HenVm (m > 1) is close to the DFT results but with differences which
originate from the differences between the final lowest states pre-
dicted by DFT and these two empirical potentials. As already dis-
cussed the migration energy of the tetrahedral He interstitial was
also fitted using the NEB method. By doing this it became difficult
to also fit well to the DFT binding energies of the He2 and He3 clus-
ters. Indeed by removing this migration energy from the materials
database, the He2 and He3 formation energies could be well repro-
duced. The fitted parameters for these two potentials (which in-
cludes a good fitted value for the migration energy) are listed in
Table 2. The properties shown in Table 1 and Fig. 1 shows that
the new potentials can well describe the single He and He-defect
cluster binding energy trends in bulk bcc iron. In real materials,
most reactions occur in polycrystals with grain boundaries. There-
fore in what fallows, we consider the situation of a symmetrical
grain boundary, to show some possible applications of new poten-
tial in the presence of planar-type defects.
4. Applications

The new potentials are used to simulate single He and He2 clus-
ter in R3(1 1 2) grain boundary plane. Only sites in the grain
boundary plane are considered for helium atoms and no off-plane
sites for He2 are included for search of the most stable configura-
tion. This R3(1 1 2) boundary has well defined tetrahedral and
octahedral interstitial positions and a small free volume content.
The structures of R3(1 1 2) are shown in Fig. 2 where the local
grain boundary plane is (1 1 2). There are several different posi-
tions for He as an interstitial atom in this grain boundary plane



<110> 

<111> 

b

a

<111>

<211>

<110>

Fig. 2. Atomic structures of the R3(1 1 2) grain boundary. The directions are also
shown, where (a) is the symmetrical grain boundary structure and (b) shows the
structure of grain boundary plane. The unit cell of Fe in the grain boundary plane
and the possible sites for He atom (a–i) are shown.
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Fig. 3. Single He in the R3(1 1 2) grain boundary plane. The direction is the same as
Fig. 2b. The 3D local structure around the He atom is also shown. Two Fe atoms A
and B in the grain boundary plane are indicated in 3D structure. The red and dark
points are He and Fe atoms, respectively. (a) Shows the results calculated with
Juslin and Nordlund potential; (b) is result calculated with FeHepot1 and FeHepot2.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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as shown in Fig. 2b. In Fig. 2b, site d is an octahedral position but
site b is not because of symmetry reduction due to the grain
boundary. Sites g and h are tetrahedral positions. Site c has the big-
gest free volume. Therefore, several different environments can be
chosen by the He atom. The structures are relaxed with the FeHe-
pot1, FeHepot2 and Juslin and Nordlund potentials in order to
compare these three different potentials. After relaxations with
MD at 0 K with the Juslin and Nordlund Fe–He potential, the most
stable position for single He was found to be at site d, that is the
octahedral interstitial position as shown in Fig. 3a. The results from
FeHepot1 and FeHepot2 are similar but differ from results obtained
with the Juslin and Nordlund potential. The most stable position
for a single He is the g or h site: the tetrahedral interstitial position
shown in Fig. 3b. The local structure of a He atom in grain bound-
ary plane is shown in 3D by connecting bonds between Fe around
He atom as indicated in Fig. 3. In Fig. 3a, the normal directions of
two perpendicular planes of the octahedral are h1 1 0i and h1 1 2i,
respectively. In Fig. 3b, the two perpendicular edges of octahedral
are parallel to h1 1 1i and h1 1 2i directions, respectively. Two Fe
atoms in the grain boundary close to the He atom are also shown
to indicate the local relative position of He. The formation energies
calculated with these three potentials for single He in R3(1 1 2)
grain boundary are: 4.03 eV (Juslin and Nordlund potential),
4.01 eV (FeHepot1) and 3.93 eV (FeHepot2). Here, the formation
energy of He in symmetrical grain boundary plane is defined as:
Ef ðHeÞ ¼ EtotðGB HeÞ � EtotðGBÞ � EHe ð4Þ

where Etot(GB_He) and Etot(GB) are the total energy of the system
with and without He in grain boundary plane, respectively. Based
on these formation energies, the binding energy of He to the grain
boundary can be calculated as 0.36 eV (Juslin and Nordlund),
0.40 eV (FeHepot1) and 0.51 eV (FeHepot2), which means the he-
lium atoms would be bound to this symmetrical grain boundary.
Different initial stable positions (with respect to the GB) can result
in different He cluster configurations, and depending on the diffu-
sion process in the grain boundary plane, influence the clustering
and growing models.

For two He atoms in the R3(1 1 2) grain boundary, the most sta-
ble configurations calculated with these three potentials are shown
in Fig. 4. The results calculated with the Juslin and Nordlund poten-
tial are shown in Fig. 4a. The two He atoms occupy two closest
octahedral interstitial positions. In Fig. 4b, results calculated with
FeHepot1 and FeHepot2 are shown. The two closest octahedrals
and tetrahedrals shown in Fig. 4a and b, respectively, have the sim-
ilar orientations as shown in Fig. 3, as explained above. The two
closest tetrahedral interstitial positions are the most stable sites
for the He atoms. The local structures around two He atoms are



a

b

Fig. 4. Two He atoms in the R3(1 1 2) grain boundary plane. The direction is same
as Figs. 2b and 3. The red and dark particles are He and Fe atoms, respectively. (a) Is
the results calculated with Juslin and Nordlund potential; (b) is result calculated
with FeHepot1 and FeHepot2. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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also shown in 3D and indicated in Fig. 4. The binding energy for the
He2 cluster in the R3(1 1 2) grain boundary is defined as:

EbðHe—HeÞ ¼ Ef ðHeÞ þ Ef ðHeÞ � Ef ðHe2Þ ð5Þ

where Ef(Hei) is formation energy of Hei cluster in grain boundary
plane and calculated with Eq. (4). The results of binding energies
calculated with these three potentials are: 0.16 eV (Juslin and
Nordlund potential), 0.25 eV (FeHepot1) and 0.18 eV (FeHepot2).
Compared with He2 in perfect single crystal, Juslin and Nordlund
potential shows increase of He2 binding energy and the new pair
potentials, FeHepot1 and FeHepot2, indicate a slightly decrease of
He2 binding energy. Thus for this grain boundary, the currently
developed potentials (FeHepot1 and FeHepot2) show the tetrahe-
dral geometry as the most stable He interstitial structure, as it is
also the case in a perfect crystal for this potential. On the other
hand, the Juslin and Nordlund potential suggests the octahedral
geometry as the ground state structure in the grain boundary,
which differs from the geometry that the same potential gives in
the single crystal case, which is the tetrahedral interstitial position.
The new potentials show that He atoms prefer to bind with the
grain boundary but the binding energy of He2 in the grain boundary
is slightly decreased. To determine which potential has the most
accurate prediction, ab initio work on this particular grain boundary
should be done.
5. Conclusion

We constructed new Fe–He pair potentials based on recent
magnetic Fe potentials and ab initio results obtained for the Hen

cluster binding energy. The migration energy of tetrahedral He
has been included in the fitting. The properties calculated with
these two new potentials are reproducing well the ab inito values.
The applications of these two potentials in the bi-crystal system
gave different results to those obtained for the Juslin and Nordlund
potential. The tetrahedral interstitial position is the most stable,
and the two close tetrahedral interaction positions are the favored
sites for He2 in the R3(1 1 2) grain boundary. These results are dif-
ferent from the Juslin and Nordlund potential results. The positive
binding energy of He to this grain boundary shows He atoms prefer
to bind to the grain boundary but the binding energy of He2 in
grain boundary plane is slightly lower than the value in the single
crystal system. Further work should be done to clarify which po-
tential provides a more accurate result of phenomena occurring
in the grain boundary.
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